The Linux Foundation adds together network automation and cloud native communities as network functions evolve to CNFs



The Linux Foundation announced on Wednesday further collaboration between telecom and cloud industry vendors enabled by the Cloud Native Computing Foundation (CNCF) and LF Networking (LFN), fueling migrations of Virtual Network Function (VNFs) to Cloud-native Network Functions (CNFs).

Early examples of both VNF and CNF enablement are seen within ONAP and via working projects from the CNCF and ONAP communities. ONAP’s inaugural release, Amsterdam, represents the second stage (2.0) of network architecture evolution: it runs in a VM, in an OpenStack, VMware, Azure or Rackspace environment. ONAP’s upcoming release, Casablanca, brings the next phase of network architecture evolution (3.0): it runs on Kubernetes, and works on any public, private, or hybrid cloud. ONAP currently supports VNFs on either VMs (running on OpenStack or VMware) or containers (running on Kubernetes via KubeVirt or Virtlet).

Specific projects addressing the migration roadmap to cloud native include LFN ONAP multi-VIM that aims to enable ONAP to deploy and run on multiple infrastructure environments, for example: OpenStack and its different distributions; public and private clouds and microservices containers. The LFN ONAP OOM enables ONAP modules to be run on Kubernetes, contributing to availability, resilience, scalability and more for ONAP deployments and sets the stage for full implementation of a microservices architecture, expected with the third release, Casablanca, due out later this year.

The latest OPNFV release, Fraser, delivers expanded cloud native NFV capabilities in nine different projects, more than doubled the number of supported Kubernetes-based scenarios, deployed two containerized VNFs, and integrated additional cloud native technologies from CNCF relating to service mesh (Istio/Envoy), logging (Fluentd), tracing (OpenTracing with Jaeger), monitoring (Prometheus), and package management (gRPC). These updates move the cloud native capabilities from basic container orchestration to include operational needs for cloud native applications. Additionally, the FastDataStacks project takes advantage of FD.io work to incorporate the VPP dataplane into Kubernetes networking capabilities to enable cloud native network-centric services.

The CNCF Cross-cloud Continuous Integration (CI) ensures cross-project interoperability and cross-cloud deployments of all cloud native technologies; shows the daily status of builds and deployments on a status dashboard; Istio allows users to connect, manage, and secure microservices for both containerized and non-containerized workloads; Ligato that provides a platform and code samples for development of cloud native VNFs. It includes a VNF agent for Vector Packet Processing (FD.io) and a Service Function Chain (SFC) controller for stitching virtual and physical networking; and (Network) Service Mesh, a novel approach solving complicated L2/L3 use cases in Kubernetes that are tricky to address with the existing Kubernetes Network Model. Inspired by Istio, Network Service Mesh maps the concept of a service mesh to L2/L3 payloads.

As telecom network transformation requires a hybrid approach, service providers will be better equipped to deliver next-gen services by realizing the full promise of containers, utilizing the best of both telecom and cloud. Combined with open source, ecosystem-wide benefits include portability, resiliency, reduced capex and opex, increased development velocity, automation, and scalability.  

As networks evolve to support next-generation services and applications, they will need to embrace characteristics inherent to cloud native architecture, such as scalability, automation, and resiliency. Compared to traditional VNFs (network functions encapsulated in a Virtual Machine (VM) running in a virtualized environment on OpenStack or VMware, for example), CNFs (network functions running on Kubernetes on public, private, or hybrid cloud environments) are lighter weight and faster to instantiate. Container-based processes are also easier to scale, chain, heal, move and back up.

Two of the fastest-growing Linux Foundation projects – ONAP (part of LF Networking) and Kubernetes (part of CNCF) – are coming together in next-generation telecom architecture as operators evolve their VNFs into CNFs running on Kubernetes.

“We have seen service providers embrace open source networking in large numbers. Benefits of virtualization and VNFs, coupled with automation platforms like ONAP, are now de-facto deployment models,” said Arpit Joshipura, General Manager, networking, The Linux Foundation. “As edge, IoT, 5G and AI start using these highly-automated cloud platforms, we are excited to see the best of both worlds come together – the scale and portability of cloud coupled with the agility, reliability and automation of telecom.”

“I’m thrilled to collaborate with our sister Linux Foundation organization, LF Networking, to demonstrate the capabilities of CNFs,” said Dan Kohn, Executive Director of Cloud Native Computing Foundation. “These implementations will bring greater elasticity to the networking space through critical pieces of the cloud native stack – like container orchestration, service mesh architectures and microservices – and allow for a new level of self-management and scalability.”

“Containerization has been one of the cornerstones of our network transformation,” said Catherine Lefevre, AVP of Research Technology Management, AT&T. “Cloud-native development represents the next level of efficiency as part of the ONAP target architecture and we’re excited to be a part of this initiative. We expect significant benefits from the OOM Project, such as improved scalability and resiliency, as well as additional cost efficiencies.”

“Cloud-native NFV delivers on the agility, velocity and cost savings promised so many years ago in the NFV manifesto. We are at the cusp of solving the two major blockers: VNF→ CNF transition, and a cloud-native way to wire the CNFs together in Kubernetes,” said David Ward, CTO and chief architect of Engineering, Cisco. “VPP provides the feature rich high performance userspace dataplane needed for CNFs, Ligato provides the toolkit for building the CNF agents to manage the VPP dataplane, and Network Service Mesh provides a truly ‘cloud-native’ approach to how to stitch CNFs together. We look forward to seeing the good work in these areas at Kubecon in Seattle in December.”

 

Leave a Reply

WWPI – Covering the best in IT since 1980